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Large panels of comprehensively characterized human cancer models, including the Cancer Cell Line Encyclopedia 
(CCLE), have provided a rigorous framework with which to study genetic variants, candidate targets, and small-molecule 
and biological therapeutics and to identify new marker-driven cancer dependencies. To improve our understanding 
of the molecular features that contribute to cancer phenotypes, including drug responses, here we have expanded 
the characterizations of cancer cell lines to include genetic, RNA splicing, DNA methylation, histone H3 modification, 
microRNA expression and reverse-phase protein array data for 1,072 cell lines from individuals of various lineages and 
ethnicities. Integration of these data with functional characterizations such as drug-sensitivity, short hairpin RNA 
knockdown and CRISPR–Cas9 knockout data reveals potential targets for cancer drugs and associated biomarkers. 
Together, this dataset and an accompanying public data portal provide a resource for the acceleration of cancer research 
using model cancer cell lines.

To understand the molecular dysregulations that can maintain cancer 
cell growth and determine response to therapeutic intervention we have 
continued to characterize the CCLE cell lines beyond the initial expres-
sion and genetic data1 (Fig. 1, Extended Data Fig. 1a–c, Supplementary 
Table 1, Methods). To this end, we performed RNA sequencing (RNA-
seq; 1,019 cell lines), whole-exome sequencing (WES; 326 cell lines), 
whole-genome sequencing (WGS; 329 cell lines), reverse-phase protein 
array (RPPA; 899 cell lines), reduced representation bisulfite sequenc-
ing (RRBS; 843 cell lines), microRNA expression profiling (954 cell 
lines) and global histone modification profiling (897 cell lines) for 
CCLE cell lines. In a parallel study, we also report the abundance meas-
ures of 225 metabolites for 928 cell lines2.

Genetic characterization of the CCLE previously included sequenc-
ing of 1,650 genes and single nucleotide polymorphism (SNP) array 
copy number profiles in 947 cell lines. To enhance this characteriza-
tion, a harmonized variant calling pipeline was used to integrate WES 
(326 cell lines), WGS (329 cell lines), deep RNA sequencing (1,019 cell 
lines), RainDance-based targeted sequencing (657 cell lines) and Sanger 
Genomics of Drug Sensitivity in Cancer (GDSC) WES data (1,001 cell 
lines, 667 overlapping)3 (Extended Data Fig. 2a, Supplementary Table 2, 
Methods). Comparison of germline variant calls between CCLE and 

GDSC data revealed a high concordance (Pearson’s correlation r = 0.95 
for allelic fractions; Extended Data Fig. 2b, Methods). Comparing data 
for individual cell lines, three (0.4%) overlapping lines had mismatch-
ing germline variant calls, suggestive of mislabelling. Mutation correla-
tion was high (r = 0.92) for cancer hotspot somatic variants, but lower 
(r = 0.8) across non-hotspot somatic variants, suggesting that genetic 
drift in distinctly passaged cell lines mainly affects passenger mutations 
(Extended Data Fig. 2c–e). We also identified 3–10% of cell lines (cor-
relation cut-off of 0.60 or 0.75) with substantial differences in somatic 
variants, suggestive of major genetic drift (Extended Data Fig. 2f–h, 
Methods, Supplementary Table 3). In these lines, experimental repro-
ducibility may be sensitive to genetic divergence after passage-induced 
bottlenecks4. We merged mutation calls for the remaining cell lines to 
provide a refined genetic profile for each cell line.

In addition, using the WGS and RNA-seq data, we now include 
structural variant annotations (329 cell lines) and gene-fusion event 
annotations (1,019 cell lines) (Extended Data Fig. 3a, b). Short hairpin 
RNA (shRNA) and single-guide RNA (sgRNA) gene dependency data-
sets from Project Achilles and Project DRIVE (Extended Data Fig. 1c) 
allow one to compare genetic events with cancer dependencies defined 
by loss of growth after gene knockdown and knockout, respectively5–7. 
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Comparing fusion calls with RNA interference (RNAi) loss-of-function 
data, we identified the ESR1-CCDC170 and AFF1-KMT2A fusions as 
driver events that lead to dependence on ESR1 and AFF1, respectively 
(Extended Data Fig. 3c–e, Methods, Supplementary Table 4). With 
WGS and targeted sequencing of 503 cell lines, we also assessed TERT 
promoter mutations and found these in 16.7% (84 out of 503), making 
it the most common non-coding somatic mutation in cancer cell lines8 
(Fig. 1, Supplementary Table 5).

Patterns of somatic mutation indicative of underlying mutational 
processes are of considerable interest. Hence, we annotated the CCLE 
using 30 COSMIC mutational signatures (Extended Data Fig. 4a, 
Supplementary Table 6, Methods) and observed considerable corre-
lation between signature activities in CCLE and The Cancer Genome 
Atlas (TCGA) cancer types (Extended Data Fig. 4b). Notably, we 
observed higher genetic drift in cell lines with COSMIC6, 21, 26 and 
15 signatures related to microsatellite instability (MSI) and COSMIC5 
and 1 signatures related to clock-like mutational processes4 (Extended 
Data Fig. 4c, d). In addition, we inferred MSI status of CCLE cell lines 
by measuring the number of short deletions in microsatellite regions 
(Extended Data Fig. 5a, Supplementary Table 7, Methods). Using this 
annotation, we investigated the causative alterations in mismatch repair 
genes in the CCLE. Among 65 inferred-MSI cell lines, we found MLH1 
hypermethylation in 17 cell lines and genomic alterations in MSH2 and 
MSH6 in 38 cell lines (Extended Data Fig. 5b). In the joint analysis of 
the RPPA and RNA-seq data, we observed discordance between mRNA 
levels and RPPA protein expression levels of MSH6 in 16 inferred-MSI 
cell lines (Extended Data Fig. 5b–d). These cell lines were enriched for 
truncating mutations in MSH2 (Extended Data Fig. 5e–h). These data 
suggest that mutation and loss of the MSH2 protein results in concord-
ant loss of MSH6 protein9,10.

Genome-wide DNA promoter methylation
To address the role of DNA methylation on mRNA expression and 
consequent changes in gene dependence, RRBS analysis was used to 
assess promoter methylation. Previously microarray-based methyl-
ation data for a subset of the CCLE cell lines was reported (n = 655 
overlapping cell lines)3. RRBS yielded robust coverage of 17,182 gene 

promoter regions in 843 cell lines (Methods). Unsupervised clustering 
of cell lines using methylation data showed lineage-based clustering 
(Extended Data Fig. 6a, b). As predicted, we observed significant neg-
ative correlation between mRNA gene expression and promoter meth-
ylation for many genes (Extended Data Fig. 6c).

To ascertain whether DNA methylation results in specific gene 
dependencies, we correlated promoter methylation with gene level 
dependence data from the sgRNA and shRNA datasets5–7 (Fig. 2a, 
Supplementary Table 8, Methods). Consistent with lineage determi-
nation of methylation patterns, promoter hypomethylation of key 
lineage transcription factors including SOX10, PAX8, HNF1B and 
HNF4A was correlated with specific gene dependence. For example, 
mRNA expression and promoter hypomethylation of the melanocyte 
transcription factor SOX10 are restricted to melanoma lines (Fig. 2b) 
and are strongly linked to sensitivity to SOX10 knockdown (Fig. 2c). 
Nearly all other cell lines lack SOX10 expression and are independent 
of SOX10 for growth.

We also observed promoter hypermethylations associated with syn-
thetic lethal interactions including RPP25 promoter methylation and 
RPP25L dependence, and LDHB promoter methylation and LDHA 
dependence (Fig. 2a). RPP25 promoter methylation was negatively 
correlated with RPP25 expression in bladder, ovary, endometrium and 
glioma lineages (Extended Data Fig. 6d), and led to dependence on the 
paralogue RPP25L (Fig. 2d). Notably, silencing of RPP25 was also cor-
related with sensitivity to POP7 knockout but not the inverse (Fig. 2a, 
Extended Data Fig. 6e). Both RPP25 and POP7 are components of rib-
onuclease P (RNase P) and RNase for mitochondrial RNA processing 
complexes11,12. These data suggest that methylation of RPP25 leads to 
increased dependency on components of the tRNA and rRNA process-
ing pathways.

LDHA and LDHB mediate the bidirectional conversion of pyru-
vate and lactate. Here we identify LDHA and LDHB as a paralogue 
dependency in which methylation of the LDHB promoter is indicative 
of vulnerability to LDHA knockout, and conversely methylation of the 
LDHA promoter is a marker of LDHB dependency (Fig. 2e, Extended 
Data Fig. 6f–h). These genes are commonly methylated in primary 
tumours (Extended Data Fig. 6i). Hence, investigations into targeting 
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Fig. 1 | Overview of the datasets. Representative heat maps from the 
CCLE datasets (n = 749). Cell lines grouped by cancer type; cancer types 
ordered by an unsupervised hierarchical clustering of mean values of 
each cancer type. From each dataset, a representative subset is shown, 
including mutation and fusion status in the top recurrently mutated genes 
and TERT promoter mutation, columns were randomly selected from 

CCLE copy number, DNA methylation, mRNA expression, exon inclusion, 
miRNA, protein array and global chromatin profiling datasets. Inferred-
MSI status, inferred-ploidy and inferred-ancestries are shown. Unknown 
TERT promoter status is shown in light grey. AML, acute myeloid 
leukaemia; ALL, acute lymphoid leukaemia; CML, chronic myelogenous 
leukaemia; DLBCL, diffuse large B-cell lymphoma; NSC, non-small cell.
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lactate dehydrogenase (LDH) in cancer may need to examine the role 
of paralogue methylation as a determining factor13.

Promoter methylation also contributes to gene inactivation in par-
allel to or in combination with genetic mutation. For example, meth-
ylation of the tumour suppressor VHL was restricted to three renal 
clear cell cancer cell lines and was associated with loss of VHL mRNA 
(Extended Data Fig. 6j). Although in most renal clear cell lines VHL is 
inactivated by DNA copy number loss and somatic mutation, in these 
three lines one copy of VHL is deleted and the other is methylated. 
Hence, integrating methylation data allows for a more complete anno-
tation of the VHL-null genotype in renal clear cell lines14.

Profiling histone tail modifications
To investigate chromatin dysregulation, global chromatin profiling 
using multiple reaction monitoring for 42 combinations of histone 
marks was performed for 897 cell lines, adding 782 cell lines to our 
previous report15,16 (Methods). These data consist of quantified abun-
dance for each of 42 modified and unmodified histone H3 tail peptides. 
Unsupervised analysis identified clusters enriched for mutations in 
chromatin-associated genes EZH2 and NSD2 as previously described 
(Fig. 3, Extended Data Fig. 7a). In these clusters, additional cell lines 
that have a similar pattern of histone modification are seen, indicat-
ing as yet unidentified mechanisms for achieving these modifications. 
We also identified a new cluster associated with marked increases in 
H3K18 and H3K27 acetylation. This cluster is enriched for EP300 
and CREBBP mutations predicted to truncate p300 and CBP, respec-
tively, in the CH3 domain after the histone acetyltransferase domain 
(Extended Data Fig. 7b, c). These data suggest that truncation of p300 
and CBP leads to increased substrate acetylation and these alterations 
may represent the first cancer-associated gain-of-function mutations 
for p300 and CBP.

Alternative splicing characterization
To enhance mRNA characterization in the CCLE further, we profiled 
the cell lines using deep RNA-seq. With this more complete CCLE 
RNA-seq dataset, we found overall good agreement of transcriptional 
profiles of CCLE lines with those of primary tumours of the TCGA 
and normal tissues of the Genotype-Tissue Expression (GTEx) projects 
(Extended Data Fig. 8a–d, Supplementary Table 9).

The role of alternative splicing in cancer is highlighted by the high 
frequency of mutations in splicing machinery components17. To inves-
tigate this further, we annotated alternative splicing across the CCLE 
and interrogated the association of splicing events with gene depend-
encies (Fig. 4a, Supplementary Table 10, Methods). The top three 
genes with strong correlations between alternative splicing and gene 
dependencies were PAX8, MDM2 and MDM4. Although PAX8 and 
MDM2 gene dependencies were also correlated with their total mRNA 
expressions, MDM4 dependency was only correlated with a specific 
MDM4 isoform (Fig. 4a, Extended Data Fig. 9a). Alternative MDM4 
splicing generates a full-length isoform (MDM4-FL) that retains exon 
6, and a shorter isoform (MDM4-S) that skips exon 6 and leads to a 
premature stop codon18,19 (Fig. 4b). MDM4 negatively regulates TP53 
and MDM4-FL has been proposed to be the functional isoform20,21. 
We validated the RNA-seq data for MDM4 exon 6 inclusion by quan-
titative reverse transcription PCR (RT–qPCR) (Fig. 4c, Supplementary 
Table 11, Methods). As function of MDM4 requires wild-type TP53, we 
asked whether MDM4 splicing was predictive of MDM4 dependence or 
sensitivity to MDM2 inhibitors among wild-type TP53 cells. We found 
that MDM4 dependence was abrogated in cells with low expression 
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of MDM4-FL (Fig. 4d), and the MDM2 inhibitor nutlin-3a was the 
inhibitor most strongly correlated with MDM4-FL (exon 6 inclusion) 
(Fig. 4e, Extended Data Fig. 9b, c, Supplementary Table 12, Methods). 
In these cases, the specific ascertainment of exon 6 inclusion or exclu-
sion outperforms total MDM4 mRNA measurements.

To ascertain possible mechanisms that govern MDM4 splicing, the 
RNA-seq data were queried for correlates of MDM4 exon 6 inclusion. 
In this analysis, RPL22L1 was an outlier (Fig. 4f, Extended Data Fig. 9d) 
and in the reverse query, MDM4 exon 6 inclusion was the top ranked 
splicing event positively correlated with RPL22L1 expression (Fig. 4g). 
Therefore, ribosomal protein RPL22L1 is a candidate regulator of 
MDM4 splicing. We previously identified RPL22L1–RPL22 as a paral-
ogue synthetic lethality pair in which loss of RPL22 leads to dependence 
on RPL22L16. In cancer, the RPL22.K15fs hotspot frameshift mutations 
are among the most common mutations in MSI tumours22 and gene 
deletion of RPL22 is common (Extended Data Fig. 9e, f). We found that 
approximately 68% (67 out of 99) of inferred-MSI cell lines in the CCLE 
contain frameshift mutations in that locus. In the CCLE and TCGA 
datasets, RPL22 loss-of-function mutation or deletion is associated 

with both higher expression of RPL22L1 and MDM4 exon 6 inclusion 
(Fig. 4h, i, Extended Data Fig. 9g, h). In the CCLE, we found that high 
RPL22L1 expression is associated with RPL22L1 dependence (Fig. 4j).

Although RPL22 and RPL22L1 are known to regulate splicing in devel-
opment23, their role in cancer is not known. Here we propose that wild-
type TP53, MDM4 exon 6 inclusion, and high RPL22L1 expression are 
genomic features associated with dependency on RPL22L1 and sensitivity 
to MDM2 and MDM4 inhibitors (Extended Data Fig. 9i). One implication 
is that MDM4 exon 6 inclusion and RPL22 or RPL22L1 status may be bio-
markers for clinical responses to MDM2 inhibitors beyond TP53 mutation.

Characterizing microRNAs across the CCLE
To understand the role of dysregulated microRNA (miRNA) expression 
in cancer progression, we quantified the expression of 734 miRNAs 
across the CCLE. Unsupervised analysis resulted in lineage clustering 
mirroring lineage associations of miRNA expression in normal tissues24 
(Extended Data Fig. 10a). To identify miRNAs associated with cancer 
dependencies, we correlated the miRNA expression data with Achilles 
gene dependency data (Methods). Here, a notable association between 
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Fig. 4 | MDM4 exon 6 inclusion is associated with MDM4 dependency 
and RPL22 or RPL22L1 status. a, Scatterplot of correlation of gene 
dependency and exon inclusion (x axis) and correlation of gene 
dependency and gene expression (y axis) (n = 243,288 exons, 200–478 
common cell lines; Supplementary Table 10; highlighted genes: |r_exon_
inclusion| > 0.4). b, Alternative splicing generates two major MDM4 
isoforms—full-length MDM4 (MDM4-FL) includes exon 6, whereas 
short MDM4 (MDM4-S) skips this exon. c, Validation of MDM4 exon 
6 inclusion in a subset of CCLE cell lines (n = 16) using quantitative 
PCR (qPCR). Data are mean and s.d. of the log2(MDM4-FL/MDM4-S) 
ratio relative to the TOV21G standard cell line calculated across three 
technical replicates. d, e, Sensitivity of cell lines to MDM4 knockdown 
(DEMETER dependency scores) (d) and treatment with nutlin-3a (Cancer 
Therapeutics Response Portal (CTRP) area under the dose–response 
curve (AUC) scores) (e) by p53 mutational status (WT, wild type; mut, 
mutated) and the MDM4 splicing categories MDM4-S (MDM4 exon 6 

inclusion ratio < 0.25) and MDM4-FL (inclusion ratio > 0.35). Numbers 
in parentheses denote the number of cell lines in each category. Box plots 
depict median (centre line), interquartile range (box), smaller of 1.5 times 
the interquartile range from the box, the minimum–maximum range 
(whiskers), and outliers (circles). f, Correlation of MDM4 exon 6 inclusion 
with gene expression (n = 1,003 cell lines). g, Correlation of RPL22L1 
expression with exon-inclusion ratios (n = 200–1,019; Supplementary 
Table 10). P values determined by two-sided Spearman’s correlation test. 
h, i, Higher RPL22L1 expression (h) and MDM4 exon 6 inclusion (i) are 
associated with RPL22 copy number (CN) loss and RPL22 truncating 
mutations or indels. Box plots as defined in d. j, Scatterplot of RPL22L1 
dependency versus RPL22L1 mRNA expression. Cell lines containing 
RPL22 truncating mutations and TP53 mutations are shown (n = 447). 
P values determined by two-sided Wilcoxon rank-sum test (d, e, j), two-
sided Spearman’s correlation test (f) or two-sided Kruskal–Wallis rank-
sum test (h, i).
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β-catenin (CTNNB1) dependence and mir-215 expression was observed 
(Extended Data Fig. 10b–d). The relationship between CTNNB1 
dependence and mir-215 expression was particularly enriched in stom-
ach and colon lineage cell lines (Extended Data Fig. 10e, Supplementary 
Table 13, Methods). The increased expression of mir-215 seen in these 
lineages was also observed in TCGA datasets (Extended Data Fig. 10f). 
Notably, gene set analysis revealed considerable correlations between 
mir-215 expression and gene sets related to stages of gastric cancer and 
the WNT pathway (Extended Data Fig. 10g–j).

Towards proteomic profiling of the CCLE
Previous studies have profiled protein expression in a subset of 
the CCLE cell lines (n = 381 overlapping cell lines)25. To study  

protein expression more systematically across the CCLE, we generated 
RPPA data for 213 antibodies across 899 CCLE cell lines (Methods, 
Supplementary Table 14). We correlated mRNA expression and pro-
tein levels to evaluate the RPPA data quality and identify genes with 
discrepancies between mRNA and protein expression (Extended Data 
Fig. 11a–d). We then asked whether protein correlates of either gene 
dependence or drug sensitivities provided additional stratification 
beyond mRNA levels. In a global analysis that correlated gene depend-
ence with mRNA or RPPA-based protein expression, we found that 
levels of ER-α and MDM4 proteins and SHC1.pY317, c-Met. pY1235 
and SHP2.pY542 phosphoproteins were more strongly correlated 
with dependency than the respective mRNAs (Fig. 5a). For example, 
dependency on PTPN11 (which encodes SHP2) is correlated with 
phosphorylated SHP2 (SHP2.pY542) but not with PTPN11 mRNA 
(Fig. 5a, Extended Data Fig. 11e). The level of phosphorylated SHP2 
(pSHP2) is also higher in cell lines that are sensitive to the SHP2 inhib-
itor SHP09926 (Extended Data Fig. 11f).

SHP2 mediates signalling through receptor tyrosine kinases (RTKs) 
and is phosphorylated in the carboxy terminus at Tyr542 and Tyr580 
in response to activation of growth factor receptor. These observations 
prompted us to look for drug sensitivities that correlate with pSHP2 
abundance. Notably, the activities of several tyrosine kinase inhibi-
tors were significantly correlated with pSHP2 levels (Extended Data 
Fig. 11g). Among these, ponatinib was the top compound for which 
adding RPPA data significantly improved drug sensitivity prediction 
(Extended Data Fig. 11h, Methods), and SHP2.pY542 expression was 
the top predictor for sensitivity to ponatinib (Extended Data Fig. 11i). 
Ponatinib targets the BCR–ABL fusion protein and is approved for the 
treatment of patients with chronic myeloid leukaemia (CML), although 
it has broad RTK activity27. Cell lines from CML, acute myeloid leu-
kaemia (AML), rhabdoid sarcoma, and thyroid lineages that contain 
specific RTK alterations were sensitive to ponatinib and had high levels 
of pSHP2 (Fig. 5b). For further validation, we selected the AML cell 
lines and added five additional AML cell lines not used in the pre-
dictive modelling as a test set, and two CML cell lines with the BCR–
ABL fusion as positive controls. In these cell lines, both the repeated 
drug sensitivities and pSHP2 levels were highly consistent with Sanger 
GDSC drug sensitivity data and RPPA pSHP2 data (Fig. 5c, Extended 
Data Fig. 11j, k). Moreover, four out of five (CTV1, NKM1, EOL1 and 
MonoMAC1) of the previously untested cell lines had high pSHP2 lev-
els and were sensitive to ponatinib. The fifth line (HEL9217) had high 
levels of pSHP2 and total SHP2 but was insensitive to ponatinib. In 
seven out of nine ponatinib-sensitive AML cell lines, we found altera-
tions in the FLT3, PDGFRA, FGFR1 or KIT genes (Fig. 5d).

We then measured pSHP2 levels by RPPA in 14 AML primagraft 
models and 6 control cell lines (Fig. 5e) and selected three models for 
in vivo experiments. Mice injected with primagrafts (CBAM-87679, 
NVAM-61786) with high levels of pSHP2 and treated with ponatinib 
had extended survival and reduced tumour cell burden when compared 
to mice injected with a low pSHP2 primagraft (DFAM-68555) (Fig. 5f, 
Extended Data Fig. 11l, m). RNA-seq analysis of the two sensitive mod-
els revealed a FLT3-ITD fusion in NVAM-61786 and a BCR-ABL fusion 
in CBAM-87679.

Together, these data suggest that pSHP2 is a marker for sensitivity 
to ponatinib in AML cell lines and primagrafts and could serve as a 
marker for RTK activation more broadly. Indeed, fusion and mutation 
detection in clinical samples across a broad range of RTKs remains 
challenging; hence, pSHP2 might serve as a common screening bio-
marker for rapidly identifying patient tumours with aberrant RTK 
activation for RTK-inhibitor trials26.

Since its launch in September 2017, the new CCLE portal has been 
accessed by more than 88,000 users from 129 countries. Despite con-
cerns about data reproducibility28, follow-up analyses performed by us 
and others have consistently shown the robustness and applicability of 
large-scale genomic and pharmacogenomic cell line data for detecting 
cancer vulnerabilities and their biomarkers29–33. Since the first data 
release, commercial and academic CCLE platforms have enabled the 
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routine profiling of compounds to guide identification of drug targets 
and predictive biomarkers34,35. Here we describe a significant advance-
ment of the CCLE resource, for the first time providing CCLE data that 
spans the central dogma from gene to transcript to protein. In a parallel 
study, we also provide the profiles of 225 metabolites analysed in 928 
CCLE lines2. These annotated datasets are now available through the 
public data portal (www.broadinstitute.org/ccle) and are integrated into 
the Dependency Map portal (depmap.org), allowing gene dependence 
by shRNA and sgRNA along with compound profiles to be queried 
against these new datasets.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-019-1186-3.
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MEthodS
Cell culture. CCLE cell lines were grown according to vendor recommendations 
as previously described1 (Supplementary Table 1).
WGS and WES. WGS for 329 cell lines and WES for 326 cell lines were per-
formed at the Broad Institute Genomics Platform. Libraries were constructed and 
sequenced on either an Illumina HiSeq 2000 or Illumina GAIIX, with the use 
of 101-base-pair (bp) paired-end reads for WGS and 76-bp paired-end reads for 
WES. Output from Illumina software was processed by the Picard data-processing 
pipeline to yield BAM files containing well-calibrated, aligned reads. All sample 
information tracking was performed by automated LIMS messaging.
Library construction. Starting with 3 µg of genomic DNA, library construction in a 
subset of samples was performed as described previously36. Other samples, however, 
were prepared using minor modifications of the published protocol. Specifically, 
initial genomic DNA input into shearing was reduced from 3 µg to 100 ng  
in 50 µl of solution, and for adaptor ligation, Illumina paired-end adapters were 
replaced with palindromic forked adapters with unique 8-base index sequences 
embedded within the adaptor.
In-solution hybrid selection (for targeted sequencing libraries). In-solution 
hybrid selection was performed as described previously36.
Size selection (for whole-genome shotgun libraries). For a subset of samples, 
size selection was performed using gel electrophoresis with a target insert size 
of either 340 bp or 370 bp ± 10%. Multiple gel cuts were taken for libraries that 
required high sequencing coverage. For another subset of samples, size selection 
was performed using Sage’s Pippin Prep.
Preparation of libraries for cluster amplification and sequencing. After the 
above sample preparation, libraries were quantified using quantitative PCR (KAPA 
Biosystems) with probes specific to the ends of the adapters. This assay was auto-
mated using the Agilent Bravo liquid handling platform. On the basis of qPCR 
quantification, libraries were normalized to 2 nM and then denatured using 0.1 N 
NaOH using Perkin-Elmer’s MultiProbe liquid handling platform. The subset of 
the samples prepared using forked, indexed adapters was quantified using qPCR, 
normalized to 2 nM using Perkin-Elmer’s Mini-Janus liquid handling platform, 
and pooled by equal volume using an Agilent Bravo Automated Liquid Handling 
Platform. Pools were then denatured using 0.1 N NaOH. Denatured samples were 
diluted into strip tubes using a Perkin-Elmer MultiProbe Robotic Liquid Handling 
System.
Cluster amplification and sequencing. Cluster amplification of denatured tem-
plates was performed according to manufacturer’s protocol (Illumina), using either 
Genome Analyzer v.3, Genome Analyzer v.4, HiSeq 2000 v.2, or HiSeq v.3 cluster 
chemistry and flowcells. For a subset of samples, SYBR Green dye was added to all 
flowcell lanes following cluster amplification, and a portion of each lane was visu-
alized using a light microscope in order to confirm target cluster density. Flowcells 
were sequenced either on a Genome Analyzer IIX using v.3 or v.4 Sequencing-
by-Synthesis Kits and analysed using RTA v.1.7.48; or on an Illumina HiSeq 2000 
using HiSeq 2000 v.2 or v.3 Sequencing-by-Synthesis Kits and analysed using RTA 
v.1.10.15 or RTA v.1.12.4.2. 101-bp paired-end reads were used for WGS, and 76-bp 
paired-end reads were used for WES. For pooled libraries prepared using forked, 
indexed adapters, the Illumina Multiplexing Sequencing Primer Kit was used and 
a third 8-bp sequencing read was performed to read molecular indices.
RainDance targeted sequencing. For 950 cell lines, genomic loci with inade-
quate coverage by targeted hybrid capture sequencing were enriched using the 
RainDance Technologies (RDT) platform to generate barcoded libraries of ampli-
cons suitable for Illumina sequencing followed by massively parallel sequencing at 
the Broad Institute (Supplementary Table 2).

Per the RDT protocol, samples containing a minimum of 5 µg of high-quality 
DNA were provided to RDT. Adaptor primers were designed to be used in the sec-
ondary amplification that contained Broad’s required sample indexing and adap-
tor sequences. RDT provided enriched DNA to Broad containing a minimum of 
100 ng of amplified and Qiagen Min-elute purified DNA that had undergone the 
RDT enrichment process using the Primer Library and that had gone through a 
secondary PCR of 10 cycles with Adaptor Primers.
RNA-seq profiling. RNA-seq and analysis were performed for 1,019 cell lines as 
previously described5. In summary, non-strand-specific RNA sequencing was per-
formed using large-scale, automated method of the Illumina TruSeq RNA Sample 
Preparation protocol. Oligo-dT beads were used to select polyadenylated mRNA. 
The selected RNA was then heat fragmented and randomly primed before cDNA 
synthesis. To maximize power to detect fusions, the insert size of fragments was 
set to 400 nt. The resultant cDNA then went through Illumina library preparation 
(end-repair, base ‘A’ addition, adaptor ligation, and enrichment) using Broad-
designed indexed adapters for multiplexing. Sequencing was performed on the 
Illumina HiSeq 2000 or HiSeq 2500 instruments with sequence coverage of no less 
than 100 million paired 101 nucleotides-long reads per sample.
miRNA profiling. Expression profiling of a panel of 734 miRNAs across 954 cell 
lines was performed using the Nanostring platform. All sample preparation and 

processing were performed according to the manufacturer’s protocol. Hybridized 
probes were purified and counted on the nCounter Prep Station and Digital 
Analyzer (NanoString), following the manufacturer’s instructions.
Global chromatin profiling. Histone modification profiling was performed as 
described previously for a total of 897 cell lines15,16. In brief, the mass spectrometry- 
based method profiles relative changes in the levels of almost all common 
post-translational modifications on histone H3.1 and/or H3.2. This includes meth-
ylation and acetylation modifications on H3K4, H3K9, H3K14, H3K18, H3K23, 
H3K27, H3K36, H3K56 and H3K79. Phosphorylation is also profiled on H3S10, 
and ubiquityl marks were profiled on H3K18 and H3K23. Importantly, the marks 
are frequently profiled as combinations (that is, H3K27me2K36me2), which is 
generally not possible with antibody-based methods. Some marks are omitted 
from visualizations for clarity. The changes observed are relative to other cell lines 
in the CCLE, with appropriate batch normalization. Common internal standards 
are used across all experiments.
RPPA. Cellular proteins were denatured by 1% SDS (with β‐mercaptoethanol) 
and diluted in five twofold serial dilutions in dilution lysis buffer. Serial diluted 
lysates were arrayed on nitrocellulose‐coated slides (from Grace Bio-Labs) using 
an Aushon 2470 Arrayer (from Aushon BioSystems). A total of 5,808 array spots 
were arranged on each slide including the spots corresponding to serial diluted: 
(1) ‘standard lysates’; and (2) positive and negative controls prepared from mixed 
cell lysates or dilution buffer.

Each slide was probed with a primary antibody and a biotin‐conjugated sec-
ondary antibody. Only antibodies with a Pearson correlation coefficient between 
RPPA and western blotting of greater than 0.7 were used. Antibodies with a single 
or dominant band on western blotting were further assessed by direct comparison 
to RPPA using cell lines with differential protein expression or modulated with 
ligands/inhibitors or siRNA for phospho‐ or structural proteins, respectively.

The signal obtained was amplified using a Dako Cytomation–Catalysed system 
(Dako) and visualized by DAB colorimetric reaction. The slides were scanned, 
analysed, and quantified using custom software to generate spot intensity.

Each dilution curve was fitted with a logistic model (‘supercurve fitting’ devel-
oped by the Department of Bioinformatics and Computational Biology in MD 
Anderson Cancer Center; http://bioinformatics.mdanderson.org/OOMPA). This 
fits a single curve using all the samples (that is, dilution series) on a slide with the 
signal intensity as the response variable and the dilution step as the independent 
variable. The fitted curve is plotted with both the observed and fitted signal intensi-
ties on the y axis and the log2 concentration of proteins on the x axis for diagnostic 
purposes. The protein concentrations of each set of slides were then normalized for 
protein loading. Correction factor was calculated by first median‐centring across 
samples of all antibody experiments and then median‐centring across antibodies 
for each sample.
RPPA technical and biological controls. RPPA profiling was performed in two 
batches, with 422 samples in batch one and 544 samples in batch two. To evaluate 
the data reproducibility between the two batches, frozen lysates from 30 samples 
generated for batch one were profiled in batch two as technical controls. To evaluate 
the reproducibility between biological replicates, 6 cell lines were grown two times 
independently and profiled in batch two as biological replicates (Supplementary 
Table 14). Five of these cell lines were also grown and profiled in batch one  
independently.
In vitro validation of ponatinib and pSHP2 association. A total of 21 cell lines 
were used to validate the observed correlation between pSHP2 level and sensitiv-
ity to ponatinib. This included two BCR–ABL fusion-containing CML cell lines 
(MEG01 and LAMA84) that were expected to be sensitive to ponatinib and 19 
AML cell lines (CMK, HEL9217, THP1, NOMO1, HL60, HEL, KO52, P31FUJ, 
OCIAML2, SIGM5, GDM1, NKM1, KG1, MonoMAC6, KASUMI1, MonoMAC1, 
CTV1, MV411 and EOL1). These included all AML cell lines in the overlap 
between CCLE RPPA and GDSC drug sensitivity datasets and five additional cell 
lines to test the hypothesis. On the basis of their sensitivity to ponatinib, CTV1 and 
NKM1 were the two non-CCLE cell lines that were selected. EOL1, HEL9217 and 
MonoMAC1 were non-GDSC cell lines, selected based on their high pSHP2 level 
(EOL1, HEL9217) and FLT3 mutation and overexpression (MonoMAC1). CCLE 
cell lines were obtained through the CCLE project, NKM1 was obtained through 
the Japanese Collection of Bioresources, and CTV1 was obtained from Leibniz-
Institut DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen). 
Cell lines were grown according to respective vendors’ recommendations.

Whole-cell extracts were prepared using a 1% NP40 lysis buffer and blotted 
with total and phosphorylated SHP2 antibodies (Cell Signaling Technology) as 
previously described37. pSHP2 levels were quantified relative to total SHP2 using 
a LI-COR Odyssey imager.

Cellular sensitivity was determined by seeding cells in growth media in 96-well 
plates and treating with indicated small molecules for 96 h in 6–8 replicates. Cell 
viabilities were quantified using CellTiterGlo and values were normalized to 
DMSO-treated cells as previously described37.

http://bioinformatics.mdanderson.org/OOMPA
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RRBS. For 843 cell lines, the RRBS method was used as previously described38.
TERT promoter mutation sequencing. Targeted sequencing of the TERT pro-
moter was performed as described previously for 190 cell lines39,40. Paired-end 
sequencing with a 150-bp read length was performed on PCR amplicons of length 
273 bp to high depth on an Illumina MiSeq instrument. We then combined this 
with variant calls for the TERT promoter from WGS dataset of 329 previously 
described cell lines41. Alternate allele fractions >10% were called as mutant for 
pre-specified sites: chr5:1295161 (hg19), chr5:1295228–1295229, chr 5:1295228, 
chr5:1295242–1295243, and chr5:1295250 using MuTect v1.1.642 (Supplementary 
Table 5).
RT–qPCR detection of MDM4 isoforms. Cell lines were processed using Trizol 
RNA extraction (Life Technologies)1. cDNA was reverse transcribed using the 
iScript cDNA synthesis kit (BioRad) with no reverse transcriptase samples serving 
as a negative control. Gene expression was quantified using the Power SYBR Green 
Master Mix (Applied Biosystems) and normalized to GAPDH. Quantification of 
the MDM4-FL/MDM4-S ratio was determined by calculating the fold change of 
MDM4-FL and MDM4-S for each technical replicate relative to the TOV21G uni-
versal reference standard cell line using the ΔΔCt method. For each cell line, the 
mean and standard deviation of the log(MDM4-FL/MDM4-S) ratio was calculated 
across technical replicates (see Supplementary Table 11 for primer sequences).
In vivo xenograft experiment. Fourteen AML primagrafts from the Public 
Repository of Xenografts (PRoXe.org) were first tested by RPPA for pSHP2 levels. 
Two of the highest pSHP2-expressing primagrafts (CBAM-87679 and NVAM-
61786) and one low pSHP2-expressing primagraft (DFAM-68555) were selected 
for xenotransplantation to test for sensitivity to ponatinib treatment. Each prima-
graft was xenotransplanted into 20 female 7-week-old NOD/SCID/γ (NSG) mice 
from Jackson Laboratory. Mice were intravenously injected with 0.15 × 106– 
1.0 × 106 cells via the lateral tail vein. Engraftment of human leukaemia cells in 
mice was followed using FACS analysis of human CD45+CD33+ or CD34+ cells in 
the peripheral mouse blood. Once leukaemia was established with an average 0.4% 
human cells in the peripheral blood from the sentinel bleed mice, animals were 
randomized into two treatment groups of 10 mice each: ponatinib (40 mg kg−1  
oral once daily) and vehicle (25 mM citrate buffer, pH 2.75). For primagraft 
CBAM-87679, ponatinib dosing started two weeks after injection given a rapid 
progression of disease. Mice were treated with ponatinib for 3 weeks. Mice were 
euthanized once morbidity and/or stage 3 hind limb paralysis due to disease bur-
den was observed. All animal studies were approved by the Dana-Farber Cancer 
Institute’s Animal Care and Use Committee.

To assess the pharmacodynamic efficacy of treatments, three mice from each 
group were analysed after 3 days of treatment. Then, 2–4 h after the day 3 drug 
or vehicle dose, mice were euthanized and tissues collected. Spleen (1/4 of total 
spleen), one femur, and liver were fixed in 10% neutral-buffered formalin for 
immunohistochemistry and other studies. The remaining spleen was crushed, 
and bone marrow cells flushed from the three remaining leg bones were viably 
cryopreserved in 10% dimethylsulfoxide (DMSO), 90% fetal bovine serum (FBS).

The remaining mice (7 per group) were treated for a total of 21 days. Survival 
analysis based on these 7 mice per group was performed using the log-rank 
(Mantle–Cox) test (GraphPad Prism 7).
Variant calling and filtering germline variants for WES, WGS, hybrid capture, 
and RainDance. A variant calling pipeline was designed to process all sequenc-
ing data generated in the CCLE. Mutation analysis for single nucleotide variants 
(SNVs) was performed using MuTect v1.1.641 in single sample mode with default 
parameters. Short indels were detected using Indelocator (http://archive.broadin-
stitute.org/cancer/cga/indelocator) in single sample mode with the default param-
eters. To ensure high-quality variant calls, we required a minimum coverage of 
4 reads with a minimum of two reads supporting the alternate allele. Variants 
with allelic fraction below 0.1 and variants outside the protein-coding region were 
excluded. To remove germline-like variants, any variant with a normal allelic fre-
quency greater than 10−5 as described in the Exome Aggregation Consortium 
(ExAC) project43 was excluded with the exception of any cancer-recurrent variants 
defined by a minimum frequency of 3 in TCGA or a frequency of 10 in COSMIC43.

We also further filtered out sequencing artefacts and germline variants using a 
panel of normals (PoN). For each genomic position, we encoded the distribution of 
alt read counts across approximately 8,000 TCGA normals. For each mutation call, we 
computed a score indicating whether or not its observed read counts are at or below 
counts across the PoN. We flagged sites with a corresponding score above a certain 
threshold (PoN log-likelihood >−2.5). Thus, if a site recurrently harbours moderate 
sequencing noise in the PoN and is called at a low-to-moderate allelic fraction, it is 
flagged. Likewise, a call with many supporting reads at the same locus would not be. 
A common germline site would have recurrently high allelic fractions across the PoN, 
but any call at that site with an allelic fraction below germline levels would be flagged.

WES data in the form of BAM files from the GDSC were downloaded from the 
Sanger Institute (http://cancer.sanger.ac.uk/cell_lines, EGA accession number: 
EGAD00001001039) GDSC dataset and processed with the same pipeline3.

Variant calling and filtering germline variants for RNA-seq data. We applied 
a similar variant calling pipeline described above to RNA-seq data with some 
modifications. Instead of using indelocator for calling indels; we used the  
GATK best practices pipeline44 (outlined in https://gatkforums.broadinstitute.org/
gatk/discussion/3892/the-gatk-best-practices-for-variant-calling-on-rnaseq-in-full-
detail) to call mutations and indels in STAR realigned RNA-seq samples. We also 
ran MuTect v.1.1.642 on Tophat 1.4 aligned samples to call SNVs. We then kept 
only the intersection of SNVs that were called by GATK and MuTect v.1.1.6. We 
further called SNVs using MuTect v.1.1.6 in 200 additional normal samples from 
the GTEx program. We used this list to exclude common artefacts and germline 
variants before running the passing variants through the same germline filtering 
process described earlier for WES and WGS. For three cell lines (HUH7_LIVER, 
FUOV1_OVARY and 2313287_STOMACH) the GATK pipeline failed to produce 
mutation calls, so we only used RNA-seq-based mutation calls for the remaining 
1,016 cell lines (Extended Data Fig. 2a).
Comparison with Sanger GDSC WES. To compare variant calls for CCLE cell 
lines and Sanger GDSC WES data, we applied MuTect to force call the germline 
filtered SNVs that were detected in either CCLE or GDSC cell lines. We also used 
a panel of approximately 100,000 common SNVs for comparing the germline var-
iants. For each SNV, we calculated the allelic fraction as the ratio of number of 
reads supporting the alternate allele to total number of reads covering the locus 
(AF = N_alt/ (N_alt+N_ref)), in which N_alt is the number of reads supporting 
alternative allele and N_ref is the number of reads supporting reference allele for 
each variant in each cell line. We included only variants that had a coverage of 10 
or more reads in both datasets and allelic fraction of at least 0.1 in minimum one 
of the datasets. We then compared the CCLE and GDSC samples by calculating the 
Pearson correlation between the allelic fractions for all variants (global compari-
son) and for each cell line (individual cell line comparison). This was done using 
both CCLE WES and CCLE hybrid capture data. We obtained highly comparable 
results between CCLE_WES_vs_Sanger_WES and CCLE_HC_vs_Sanger_WES 
(Extended Data Fig. 2f, g). We used correlation between CCLE_HC and Sanger 
WES to annotate the genetic drift in each cell line (Supplementary Table 3). For the 
merged mutational calls, we excluded 65 Sanger cell lines with Pearson’s r < 0.75 for 
somatic variants allelic fractions. For cancer hotspot mutations, we only included 
the subset of variants that were highly recurrently observed in TCGA (in 6 or more 
TCGA samples). We excluded the three germline mismatching cell lines (DOV13_
OVARY, PC3_PROSTATE and ISHIKAWAHERAKLIO02ER_ENDOMETRIUM) 
in the global comparisons.
Structural variant analysis. In total, 932 whole genomes aligned to human 
genome reference GRCh37 available from Genomic Data Commons as part of 
the TCGA and 329 new whole genomes from the CCLE cell lines were run through 
the SvABA45 structural variant caller using default settings with each tumour 
genome paired with its corresponding normal genome. For CCLE WGS, we 
used HCC1143BL as the normal, and further filtered out more possible germline 
structural variants with a structural variant blacklist constructed from the set of 
all germline structural variants detected as part of the SvABA structural variant 
calling pipeline.
Fusions detection and filtering. For gene fusion detection, we used STAR-Fusion 
v.0.7.1 (https://github.com/STAR-Fusion/STAR-Fusion)46, which identifies fusion 
transcripts from RNA-seq data and outputs all supporting data discovered during 
alignment. We used a cut-off of five reads (either spanning or crossing the fusion) 
to call the presence of a translocation. To reduce artefacts, we removed any fusions 
detected in more than one sample in GTEx or in 20 or more samples in CCLE 
and removed fusions involving mitochondrial chromosomes, or HLA genes, or 
immunoglobulin genes, or with (SpliceType = “INCL_NON_REF_SPLICE” and 
LargeAnchorSupport = “No” and minFAF <0.02), or (sumFFPM <0.1 and min-
FAF <0.02). We further filtered fusions by fusion allelic fractions (FAF_left2 + 
FAF_right2 > 0.0225 and minFAF >0.03, excluding fusions detected in TCGA). 
Here FAF_left is fusion allelic fraction for the left fusion partner reported by STAR-
Fusion, FAF_right is the fusion allelic fraction for the right fusion partner, and 
minFAF is the minimum of the two.
Comparison of fusions with gene dependencies. To investigate the association 
between fusions and gene dependencies, for each of the gene dependency datasets 
(Achilles RNAi, Achilles CRISPR, and DRIVE RNAi), and for each of the two 
genes in the fusion gene pair, we divided cell lines into two groups based on the 
presence of the fusion, and applied two-sided t-test to compare the distribution 
of gene dependencies in the two groups. We used the Benjamini and Hochberg 
procedure to obtain adjusted P values. We used the difference between the mean 
dependencies in the two groups to calculate the effect size (Extended Data Fig. 3c, 
Supplementary Table 4).
Mutational signature analysis. TCGA MC3 mutations calls were downloaded 
from https://gdc.cancer.gov/about-data/publications/mc3-2017 and filtered to keep 
only mutations with ‘PASS’ or ‘wga’ in ‘FILTER’ column. Based on the mapping of 
CCLE cell lines to TCGA cancer types, we only considered 19 cancer types having 
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at least 20 cell lines; BLCA (n = 29), BRCA (n = 60), COAD.READ (n = 72), DLBC 
(n = 56), ESCA (n = 38), GBM (n = 45), HNSC (n = 62), KIRC (n = 55), LAML 
(n = 46), LIHC (n = 28), LUAD (n = 84), LUSC (n = 24), OV (n = 60), PAAD 
(n = 48), SARC (n = 38), SKCM (n = 79), STAD (n = 46), and UCEC (n = 29). All 
SNVs in both TCGA and CCLE cohorts were classified into 96 base substitutions 
in tri-nucleotide sequence contexts.
De novo extraction. For each cancer type, we combined TCGA and CCLE data 
and first performed de novo signature discovery in each combined cohort exploit-
ing a Bayesian variant of non-negative matrix factorization, ‘SignatureAnalyzer’ 
(http://archive.broadinstitute.org/cancer/cga/msp)47,48, inferring an optimal num-
ber of signatures best explaining observed mutations. In each de novo extraction, 
we enforced a pure ‘C>T at CpG’ signature as a default, which is profiled from the 
COSMIC1 signature (https://cancer.sanger.ac.uk/cosmic/signatures) after remov-
ing all other components except for C>T at ACG, CCG, GCG, and TCG. The 
separation of C>T_CpG components from the conventional COSMIC1 was aimed 
to minimize a possible interference between the background, residual compo-
nents in COSMIC1 and COSMIC5, which are highly overlapping with each other. 
Based on manual inspection and the cosine similarity of extracted signatures to 
30 COSMIC signatures, we identified a set of active signatures in each cancer type 
(Supplementary Table 6) and exploited this information in the following projection 
step to infer the activity of COSMIC signatures in both TCGA and CCLE cohorts. 
Based on prior knowledge and literature, we only allowed COSMIC3 (BRCA sig-
nature) in BRCA, OV, PAAD, SARC, STAD and UCEC.
Projection. The comparison of signature attributions across different cancer types 
or different cohorts needs the use of the same signature profiles. Because the signa-
ture profiles from a de novo extraction varied across cancer types, depending on 
the number of samples or mutations, here we performed a projection approach to 
infer sample-specific attributions based on 30 COSMIC signature profiles by mod-
ifying ‘SignatureAnalyzer’. The pure ‘C>T at CpG’ signature was used instead of 
COSMIC1. More specifically, the projection was done by minimizing the Kullback–
Leibler divergence between the mutation count matrix, X (96 × N), N being a num-
ber of samples in each combined cohort of TCGA and CCLE, and a product of the 
signature-loading matrix W (96 × K) and the activity-loading matrix H (30 × K). 
During the optimization the signature-loading matrix W, which consisted of the 
normalized signature profiles of the corresponding K COSMIC signatures, was 
strictly frozen and the activity-loading matrix H was iteratively refined through 
the multiplication update scheme to best approximate the mutation count matrix  
X ~ WH. The resulting row vectors in H represent de-convoluted signature activ-
ities across samples49. In each projection we restricted the usage of signatures only 
to the active ones identified from the de novo extraction step (Supplementary 
Table 6; K being the number of active signatures). Owing to the multiple MSI 
signatures (common signatures through most MSI samples, COSMIC6, 15, 21, 
26; POLE+MSI, COSMIC14; POLD+MSI, COSMIC20)50 all common MSI 
signatures were allowed when a de novo extraction identified at least one of six 
MSI signatures, while COSMIC14 and COSMIC20, unique to POLE+MSI and 
POLD+MSI, respectively, were strictly allowed only when there was evidence for 
the corresponding signature in de novo extraction.
Signature comparison between CCLE and TCGA. For each cancer type, we first 
calculated the normalized activity of each individual signature across tumours and 
cell lines (number of mutations attributed to each signature/number of mutations 
in each sample), and compared the mean of normalized activities between the 
TCGA and CCLE cohorts.
MSI annotations. For each cell line profiled by sequencing, we inferred MSI status 
by counting the total number of filtered deletions called by Indelocator (http://
archive.broadinstitute.org/cancer/cga/indelocator) and the fraction of these dele-
tions that were located in microsatellite regions as defined by three consecutive 
repeats of a sequence of less than five nucleotides in length. On the basis of the 
distributions of these values in each of the sequencing datasets (CCLE Hybrid 
Capture, CCLE WGS, CCLE WES, and Sanger WES), we specified a threshold 
value for the number of MS deletions (N_MS_del) and two threshold values for 
the percentage of microsatellite deletions (P_MS_del_1 and P_MS_del_2, see 
Supplementary Table 7). Cell lines were annotated as inferred-MSI if the number 
of MS deletions was greater than N_MS_del and the percentage of MS deletions 
was greater than P_MS_del_2. Similarly, cell lines were annotated as inferred-MSS 
if the number of MS deletions was less than N_MS_del and the percentage of MS 
deletions was less than P_MS_del_1 in any of the four datasets (Extended Data 
Fig. 5a, Supplementary Table 7).
ABSOLUTE copy number analysis. Allelic copy number, whole-genome dou-
bling, subclonality, purity and ploidy estimates were generated by the ABSOLUTE 
algorithm51. Somatic copy numbers used in ABSOLUTE analysis were derived 
either from SNP arrays or WES. Allelic fractions of mutation were derived from 
either Hybrid Capture sequencing or WES data.
Annotation of DNA methylation for promoters, enhancers, and CpG islands. 
Short reads from the RRBS data were aligned using Bismark 0.7.1252 for 843 

cell lines. CpG methylation was estimated using the read.bismark tool in the R 
MethylKit package1,53 with parameters mincov = 5 and minqual = 20. To estimate 
gene promoter level methylations, we used RefSeq transcription start site (TSS) 
information for hg19 downloaded from the UCSC genome browser. To define pro-
moter regions, we used two approaches. First, for the global analysis of correlation 
between methylation and mRNA expression (Extended Data Fig. 6c), we used a 
fixed window size of 1,000 bp upstream of the TSS for each gene and calculated a 
coverage-weighted average of CpG methylations for CpG sites within this region as 
previously described54. We found 17,182 genes with average coverage greater than 
5 reads in the RRBS dataset. For most genes, we observed that the 1 kb upstream 
TSS region contains the promoter methylation changes. However, for some genes, 
(for example, VHL), we observed downstream methylation changes relative to the 
TSS. Therefore, we used an alternative approach to capture gene level methylation 
signal for the remainder of the analyses in the paper. For each TSS, using data for 
all cell lines, we first clustered CpG sites within (−3,000, 2,000) nucleotides of 
the TSS using the hclust function in R and cut the hierarchical clustering tree to 
form three clusters. This approach grouped together the CpG sites with similar 
methylation changes across samples, and these clusters usually represented the 
CpG sites in the promoter, upstream, and downstream regions. We used the same 
weighted averaging approach described above to calculate the methylation signal 
for each cluster in each sample.

To annotate the CpG island and enhancer methylations in the cell lines, we 
downloaded CpG island and VISTA enhancer coordinates from UCSC genome 
browser and applied the above unsupervised clustering to a window (coordinate 
start −2,000, coordinate end +2,000) to determine the methylation for each 
enhancer and CpG island sequence. For sequences with length greater than 5000, 
we first divided them into sections of length 5,000, and then performed the same 
clustering process.
t-SNE plots for DNA methylation data. To visualize the high-dimensional DNA 
methylation data, we used the t-distributed stochastic neighbour embedding  
(t-SNE) algorithm implemented in the Rtsne package in R with default parame-
ters55. We used all the promoter methylation values for CpG clusters with a proper 
coverage (average CpG coverage >25 reads) as input features for a two-dimen-
sional embedding for visualization.
Comparison of DNA methylation and mRNA. To compare mRNA expression 
and promoter methylation, for each gene, we first calculated Z scores for its mRNA 
expression (log(RPKM)) and promoter methylation. We then calculated the linear 
regression coefficient associating expression to methylation while correcting for 
cancer type using the R function lm(expr~meth+cancer_type). For the null dis-
tribution, we permuted the gene labels for mRNA expression dataset and repeated 
the same procedure.
Comparison of DNA methylation and dependency. To investigate the associa-
tion between promoter methylation and gene dependencies, for 2,776 genes with 
significant negative correlations between promoter methylation and mRNA expres-
sion (Pearson’s correlation <−0.5), we calculated Pearson correlations between 
promoter methylations and dependencies for all pairs of genes connected in the 
STRING dataset (string-db.org)56. Here, for each gene, we considered up to 100 
top connected genes in STRING with a connectivity score above or equal to 800. 
For robust correlations, we excluded the top three cell lines with highest sums of 
squares of normalized dependency and methylation scores and calculated Pearson 
correlations using the remaining samples. This analysis was performed separately 
on the Achilles RNAi5, Achilles CRISPR7, and Project DRIVE6 gene dependency 
datasets. For each correlation coefficient value, we assigned an estimated P value 
by fitting a normal distribution to all correlation coefficients calculated within the 
respective dataset. We then used the p.adjust function in R to calculate the false 
discovery rate (q value) for each methylation-dependency correlation (Fig. 2a and 
Supplementary Table 8).
LDHA, LDHB and RPP25 promoter methylation in TCGA. We examined 
methylation–expression relationships for LDHA, LDHB and RPP25 in 22 TCGA 
tumour types. Methylation profiling (Illumina HM450 BeadChip beta-values) 
and RNA-seq expression (log2(RPKM)) data were sourced from the TCGA provi-
sional datasets hosted at cBioPortal (cbioportal.org/datasets.jsp)57,58. We excluded 
tumour types with less than 100 samples with both methylation and expression 
annotations. Correlation values for methylation versus expression of the same gene 
were then computed and are shown in order of magnitude (Extended Data Fig. 6i).
Global chromatin profiling analysis. The 897 cell lines with available global chro-
matin data were clustered based on the 38 (out of 42) chromatin modifications that 
were detected in more than 98% of the cell lines using the pheatmap R function 
(Pretty Heatmaps v1.0.10) with parameters clustering_method = 'ward.D', clus-
tering_distance_cols = 'euclidean', and cutree_cols = 19.

CREBBP TAZ2 (CH3)-specific truncating mutations were annotated as the 
truncating mutations in CREBBP occurring between amino acids 1745 and 1846 
(affecting the TAZ2 (CH3) domain but not the ZZ domain). Similarly, for EP300 
TAZ2 (CH3)-specific truncating mutations, we included any truncating mutation 

http://archive.broadinstitute.org/cancer/cga/msp
https://cancer.sanger.ac.uk/cosmic/signatures
http://archive.broadinstitute.org/cancer/cga/indelocator
http://archive.broadinstitute.org/cancer/cga/indelocator
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in EP300 occurring between amino acids 1708 and 1809 (Fig. 3, Extended Data 
Fig. 7a).
EP300 and CREBBP enrichment volcano plot. Two-sided Fisher’s test was used to 
evaluate enrichment of truncating mutations in the newly identified high H3K18/
K3K27 acetylation cluster. For truncating mutations, we included any nonsense 
mutations, splice site mutations, or frameshift indels affecting any part of the gene. 
For the analysis in Extended Data Fig. 7b, only genes with at least 20 affected cell 
lines (n = 684) were included. We used fisher.test function in R to estimate the odds 
ratios and P values. Adjusted P values were obtained using p.adjust function in R.
Short read alignment and calculation of gene expression. RNA-seq reads were 
aligned to the GRCh37 build of the human genome reference using STAR 2.4.2a59. 
The GENCODE v19 annotation was used for the STAR alignment and all other 
quantifications. Gene level RPKM and read count values were calculated using 
RNA-SeQC v1.1.860. Exon–exon junction read counts were obtained from STAR. 
Isoform-level expression in TPM (transcripts per million) was quantified using 
RSEM v.1.2.22. All methods were run as part of the pipeline developed for the 
GTEx Consortium (https://gtexportal.org)61.
CCLE comparison to GTEx and TCGA. We compiled log2(TPM + 1) gene 
expression data for 1,019 CCLE cancer cell lines, 10,535 TCGA primary tumour 
samples, and 11,688 GTEx normal tissue samples. TCGA Pan-Cancer TOIL RSEM 
TPM data were obtained from Xena Browser (https://xenabrowser.net/) and GTEx 
v.7 TPM data were accessed from the GTEx Portal (https://gtexportal.org/home/
datasets). We compared CCLE and TCGA data using a subset of 5,000 genes that 
were highly variable in the CCLE and TCGA data and 22 cancer types that were 
common to both the TCGA and CCLE datasets. In each dataset, we averaged the 
gene expression data across all samples per cancer type, then mean subtracted per 
gene. We calculated the pairwise Pearson’s correlation between the averaged CCLE 
gene expression and the averaged TCGA gene expression. We compared CCLE 
and GTEx data using a subset of 5,000 genes that were highly variable in the CCLE 
and GTEx data. We averaged the CCLE and GTEx gene expression data across all 
samples per cancer type or primary site, respectively, mean subtracted per gene, 
and calculated the pairwise Pearson correlation between the averaged CCLE gene 
expression and the averaged GTEx gene expression. We also compared individual 
CCLE cell lines to TCGA and GTEx average profiles. The gene expression data for 
individual cell lines were mean subtracted per gene using the same vector of means 
as the averaged CCLE expression. We calculated the pairwise Pearson correlation 
between the gene expression for these cell lines and the averaged TCGA and GTEx 
gene expression (Supplementary Table 9).
Exon-inclusion ratios. To quantify alternative splicing in cell lines, we used 
the STAR junction read counts to estimate the fraction of times each exon was 
spliced in. For both ends of each exon, we calculated the total number of junc-
tion reads supporting inclusion of that exon (ni) and the total number of junction 
reads supporting skipping of the exon (ns). We estimated the inclusion ratio as  
r = ni/(ni + ns). We required each exon ratio to be supported by at least 10 reads 
(ni + ns ≥ 10).
Splicing versus dependency. To investigate whether some gene dependencies 
were more strongly correlated with exon splicing instead of total mRNA expres-
sion, we correlated exon-inclusion ratios produced using the above method with 
Achilles RNAi gene dependency data and compared the results to a similar analysis 
based on mRNA expression. For each exon, we calculated the Pearson correlation 
between exon inclusion and the DEMETER dependency score of the same gene 
(x axis on Fig. 4a) and compared that correlation with the respective Pearson cor-
relation between the total mRNA expression and dependency of the same gene  
(y axis on Fig. 4a). In this analysis, we only included exons quantified in at least  
200 cell lines with Achilles data to obtain robust correlation estimates.
Nanostring data quality control and normalization. Samples were divided into 
14 batches, and two replicates of the K-562 cell line were included in each batch as 
a control. Internal positive and negative controls were used for normalization as 
recommended by NanoString using NanoString nSolver software. We excluded 
samples that failed NanoString nSolver quality control as well as one sample based 
on low positive control signal (normalization coefficient >6) and another sample 
based on high background signal (with second ranked negative control value >80). 
To estimate the background signal, we sorted the values for the negative controls 
within each sample and picked the second highest value as the background esti-
mate. The median background estimate across all cell lines was 26.1. We used 
log(50 + N), in which N is the nSolver normalized value to reduce the effect of the 
background signal in the downstream analyses.
Comparison of miRNA and dependency. To identify the strongest specific asso-
ciations between miRNA expression and gene dependencies, we calculated the 
Pearson’s correlation between the expression of each microRNA and each gene 
dependency score in the Achilles RNAi dataset. We then normalized the Pearson’s 
correlations for each microRNA (z1, x axis in Extended Data Fig. 10b) and for each 
gene dependency (z2, y axis in Extended Data Fig. 10b). Several gene dependency–
microRNA pairs showed outlier correlations (with |z1| > 6 or |z2| > 6). We chose 

the top scoring association (CTNNB1 and mir-215) for further investigation and 
comparison with data from TCGA (Extended Data Fig. 10c–j, Supplementary 
Table 13).
RPPA analysis, batch effect correction and quality control. RPPA data were 
normalized within each batch as described above (see ‘RPPA’ section), and the 
log-transformed values were merged and corrected for batch effect using the 
removeBatchEffect method in Limma package in Bioconductor62,63.

Out of the 925 cell lines that were profiled, 26 lines were excluded. These 
consisted of 19 lines with low total protein content and 7 lines with poor overall 
mRNA–protein correlations. For the 6 cell lines with biological replicates, the aver-
age of the two replicates in batch two were used.
Correlation of mRNA and protein. For 154 RPPA antibodies against single gene 
total proteins, Pearson correlations for mRNA (RNA-seq log2(RPKM)) and protein 
levels were obtained. For null distribution, gene labels were randomly permuted 
(Extended Data Fig. 11a).
Effect of RPPA dynamic range on protein–mRNA correlation. For 154 RPPA 
antibodies against single gene total proteins, the dynamic range was calculated as 
the difference between the third highest and the third lowest values across all cell 
lines. Dynamic range was plotted against mRNA–protein correlations (Extended 
Data Fig. 11b). Statistical significance was determined using two-sided Pearson’s 
correlation test.
Effect of antibody type and antibody quality on the protein–mRNA correlation. 
For 154 RPPA antibodies against single gene total proteins, Wilcoxon rank-sum test 
was used to evaluate the difference between validated antibodies (n = 96) and those 
annotated as ‘with caution’ (n = 58) as provided by MD Anderson Cancer Center 
Reverse Phase Protein Array (RPPA) Core Facility (Extended Data Fig.  11c, left, 
Supplementary Table 14). Similarly, we compared the protein–mRNA correlations 
of antibodies against single gene total protein (n = 154) with antibodies against 
single gene phospho-proteins (n = 50).
Comparison of mRNA–protein correlations between CCLE and TCGA. mRNA 
and protein correlations for 181 antibodies across 3,467 TCGA samples from 
11 tumour types were calculated for each antibody and compared with CCLE 
mRNA-protein correlations64. Two-sided Pearson’s correlation test was used to 
evaluate statistical significance (Extended Data Fig. 11d).
RPPA elastic net analysis. An elastic net regression analysis similar to the one 
used previously1 was run to find genomic features that predict drug sensitivities as 
measured by AUC. The feature set included mutations, DNA copy number, mRNA 
expression and RPPA protein data. These features were used to predict sensitivities 
to 24 compounds profiled in the CCLE and 138 compounds from GDSC project.

Features with an absolute Pearson correlation of greater than 0.1 with the target 
drug sensitivity profile were selected. Optimal values for the alpha and lambda 
parameters were found by a tenfold cross-validation using cv.glmnet function in 
the glmnet R package65. A 200-fold bootstrapping was then performed using the 
optimal parameter values. We calculated the frequency of selection and average 
weight for each feature.

The above analysis was performed twice for each drug, once using all features 
and another time using all features with the exclusion of RPPA values. The model 
prediction errors for the two models were compared to estimate the accuracy 
gained by adding the RPPA data.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
All the CCLE processed datasets are available at the CCLE portal (www.broad 
institute.org/ccle) and DepMap portal (http://www.depmap.org). Raw sequenc-
ing data are available at Sequence Read Archive (SRA) under accession number 
PRJNA523380. Achilles RNAi data (DEMETER scores) were downloaded from 
https://portals.broadinstitute.org/achilles. The Project Achilles CRISPR Avana 
18Q3 public dataset (gene effects, CERES scores) was downloaded from https://
figshare.com/articles/DepMap_Achilles_18Q3_public/6931364/1. Novartis 
Project DRIVE RNAi dataset (ATARiS scores) was obtained from the Project 
DRIVE authors. CTRP AUC scores was downloaded from the NCI website 
(ftp://caftpd.nci.nih.gov/pub/OCG-DCC/CTD2/Broad/CTRPv2.0_2015_ctd2_
ExpandedDataset). Sanger GDSC drug sensitivity (AUC and IC50 scores) were 
downloaded from the Sanger website (https://www.cancerrxgene.org/down-
loads).

Code availability
Most of the statistical analyses were performed in R (version 3.5.2). Source codes 
are available upon request.
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Extended Data Fig. 1 | Overview of CCLE cell lines and datasets. a, The 
existing and new CCLE datasets as indicated are depicted. b, Distribution 
of cell lines by lineage and ancestry across CCLE. c, Visual representation 

of the number of cell lines in each dataset. New CCLE datasets are shown 
in red. Functional genomics datasets are shown in blue.
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Extended Data Fig. 2 | CCLE variant calling pipeline and CCLE 
and GDSC comparison. a, Unified pipeline integrating mutation and 
indel calls from different platforms was used to generate a set of high 
confidence genomic alterations across 1,063 cancer cell lines. Identified 
variants were cross-referenced with the ExAC and TCGA databases and 
a panel of normals (PoN) to exclude germline variants/artefacts and 
generate the finalized high-confidence variant call set. b–d, Comparison 
of variant calls between CCLE and Sanger GDSC cell lines for germline 
(b; n = 1,250,562), TCGA hotspot somatic (c; n = 281) and non-hotspot 
somatic (d; n = 82,572) variants using WES data. Pearson’s correlation 
coefficients are shown. e, Comparison of TCGA hotspot variant calls 
between CCLE Hybrid Capture (HC) data and Sanger GDSC WES data. 

Variants with allelic fraction >0.4 in one dataset and greater than fourfold 
difference in allelic fractions between the two datasets are shown as open 
circles (n = 980). f, g, Comparison of Pearson’s correlation coefficients 
between CCLE WES and Sanger GDSC WES data versus Pearson’s 
correlation coefficients between CCLE HC and Sanger GDSC WES data 
for germline (f; n = 107) and somatic (g; n = 93) variants. Cell lines with 
fewer than 30 variants were excluded. h, Comparison of allelic fraction 
Pearson’s correlations between CCLE cell lines and Sanger cell lines using 
CCLE HC and Sanger GDSC WES data (n = 558 common cell lines 
between the two datasets; Supplementary Table 3). Cell lines with low 
germline correlation (sample mismatch) and low somatic correlation 
(genetic drift) are highlighted.
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Extended Data Fig. 3 | Annotation of structural variants and fusions 
in CCLE cell lines. a, Structural variant burden in CCLE whole genomes. 
Structural variants detected by SvABA in cell lines grouped by tissue type 
are plotted in the order of mean structural variant burden (red bar in each 
facet). b, Bar plot of recurrent COSMIC fusions detected in CCLE RNA-
seq data coloured by cell line lineage. c, Volcano plot of Achilles RNAi 
gene dependencies versus CCLE fusions for cell lines (n = 478) common 
between CCLE and Achilles datasets. P values determined by two-sided 

t-test. Genes with significant adjusted P values (false discovery rate (FDR) 
< 0.1) are highlighted. d, e, Examples of fusions associated with gene 
dependency: cell lines with ESR1-CCDC170 fusion (n = 4) are sensitive 
to ESR1 shRNA knockdown (d), and cell lines with AFF1-KMT2A fusion 
(n = 3) are sensitive to AFF1 shRNA knockdown (e). The x axis shows 
mRNA expression, and the y axis shows Achilles RNAi gene dependency 
DEMETER score5.
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Extended Data Fig. 4 | Comparison of COSMIC mutational signatures 
in CCLE and TCGA datasets. a, Mutational signature activity for CCLE 
cell lines and TCGA tumours averaged for each cancer type. For each 
sample, we computed a fraction of mutations attributed to 30 COSMIC 
signatures and took average across samples in each cancer type. Tumour 
types selected for representation have at least 20 samples in CCLE. 
b, Scatterplots for the mutational signature activities for CCLE and 

TCGA (n = 168). P value determined by linear regression analysis and 
corrected for COSMIC signature number. c, Volcano plot for comparison 
of COSMIC mutational signatures and CCLE or GDSC genetic drift 
estimates using two-sided Pearson’s correlation test (n = 3–459; 
Supplementary Table 6). d, Scatter plot for COSMIC6 mutational activity 
signatures versus CCLE or GDSC genetic drift estimates (n = 354). Colour 
coding as in b. P value determined by Pearson’s correlation test.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Determination of MSI status in the CCLE and 
interrogation of mismatch repair genes. a, Identification of MSI cell 
lines. Number of deletions in microsatellite regions is plotted versus 
percentage of deletions in microsatellite regions for all cell lines in CCLE 
HC sequencing, CCLE WGS, CCLE WES, and Sanger GDSC WES datasets 
(see Methods). The x axis denotes the number of short deletions in 
microsatellite regions, and the y axis denotes percentage microsatellite as 
measured by the percentage of short deletions that lie within microsatellite 
regions. Inferred MSI cell lines are outlined by the green rectangle.  
b, Heat plot of inferred MSI status and selected CCLE annotations for 
DNA mismatch repair genes MLH1, MSH2 and MSH6 genes for all cell 
lines (top) and the MSI subset (bottom). Highlighted red boxes show 
differences in mRNA and protein expression levels in MSH2 and MSH6. 
MLH1 hypermethylation is defined as average promoter methylation 
greater than 0.5. c, d, Scatterplot of CCLE cell lines comparing MSH6 

mRNA expression levels (x axis) from RNA-seq versus MSH6 protein 
abundance (y axis) as quantified by RPPA in inferred-MSI (c) and 
inferred-MSS (d) cell lines. Red and blue denotes cell lines containing 
truncating mutations or copy number loss in MSH6 and MSH2, 
respectively. Purple denotes cell lines containing truncating mutation or 
copy number loss in both MSH2 and MSH6. The black box highlights 
the MSH6 high mRNA low protein (HL) category. e–g, Bar plots of 
percentages of cell lines containing truncating mutations in MSH6 (e) or 
MSH2 (f), and MLH1 expression loss (g) in different MSH6 mRNA and 
protein categories among inferred-MSI cell lines (LL: n = 11; HL: n = 17; 
HH: n = 44). P = 4 × 10−4 (e), P = 1 × 10−3 (f) and P = 1 × 10−4 (g), 
two-sided Fisher test. h, MSH2 protein levels in different MSH6 mRNA 
and protein categories. ***P < 1 × 10−6, two-sided Wilcoxon rank-sum 
test. P = 8 × 10−14, difference between the HH and HL set; P = 1 × 10−8, 
difference between the HH and LL set. Box plots as defined in Fig. 4d.
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Extended Data Fig. 6 | Examples of DNA methylation associated with 
gene expression and dependencies in cell lines. a, t-SNE plot for DNA 
methylation data across all CCLE cell lines. Each dot represents a cell 
line coloured by cell lineage. b, Distribution of mean CpG methylation 
in CCLE cell lines (n = 843) grouped by cancer type. Box plots as 
defined in Fig. 4d. c, Correlation of promoter methylation and gene 
expression for all genes corrected for cancer type (n = 836 cell lines, 
18,296 genes). The y axis represents the number of genes, and the x axis is 
the linear regression coefficient corresponding to normalized promoter 
DNA methylation. Cancer types were used as covariates in the linear 
regression analysis. A subset of genes show significant correlation between 
higher promoter methylation and lower gene expression (n = 7,388; 
permutation test P < 0.05; Methods). Dotted line shows the empirical 
null distribution. d, Cell lines with higher levels of RPP25 methylation 
show decreased RPP25 mRNA expression (Pearson’s r = −0.79, n = 834 
cell lines; P < 2.2 × 10−16). e, Comparison of Achilles RNAi RPP25 
gene dependency scores for cell lines with and without truncating 
mutation or copy number loss in POP7 or RPP25L genes (n = 458 

cell lines; P = 0.74, two-sided Wilcoxon rank-sum test). Box plots as 
defined in Fig. 4d. f, Cell lines with higher levels of LDHB methylation 
show decreased LDHB mRNA expression (Pearson’s r = −0.80, n = 815 
cell lines; P < 2.2 × 10−16). g, Cell lines with higher levels of LDHA 
methylation show decreased LDHA expression. Two cell lines, SK-N-BE2 
and U-251-MG, show markedly higher LDHA methylation and decreased 
LDHA expression (Pearson’s r = −0.27, n = 836; P = 5.34 × 10−16). 
h, Cell lines with high levels of LDHA methylation display sensitivity 
to LDHB knockout by CRISPR–Cas9 screening (Pearson’s r = −0.53, 
n = 371, P < 2.2 × 10−16). i, Promoter methylation versus mRNA 
expression correlations in TCGA tumour types (sample sizes shown 
in parentheses). *P < 0.001, Pearson’s correlation test. j, Scatterplot 
of CCLE lines comparing expression of tumour suppressor VHL (Von 
Hippel-Landau) mRNA versus VHL methylation (left, all cell lines) and 
copy number (right, kidney subset). VHL hypermethylation in three 
kidney cell lines is associated with marked loss of VHL expression. VHL 
is inactivated by DNA copy number loss, somatic mutation, and promoter 
hypermethylation.
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Extended Data Fig. 7 | Global chromatin profiling dataset.  
a, Unsupervised clustering of global chromatin profiling data for 897 
CCLE cell lines. Each column corresponds to an individual cell line 
and each row corresponds to a specific combination of chromatin post-
translational modifications (‘marks’). For each mark, the fold change 
relative to the median of cell lines is depicted on the heat map. EZH2, 
NSD2, CREBBP and EP300 status are annotated. Previously described 
clusters (associated with EZH2 gain of function, EZH2 loss of function, 
and NSD2 alterations), as well as the newly identified cluster associated 
with p300 and CBP gain-of-function alterations, are annotated.  
b, Volcano plot for truncating mutation enrichment analysis in the newly 

identified cluster, characterized by marked increases in H3K18 and H3K27 
acetylation is shown (n = 893 cell lines; adjusted P values determined by 
two-sided Fisher’s exact test). EP300 and CREBBP are the top two genes 
with truncating mutations enriched in this cluster. Only genes with at 
least 20 affected cell lines (n = 684 genes) were included. c, Distribution 
of truncating mutations affecting EP300 and CREBBP in the 10 cell lines 
in the newly identified p300/CBP cluster. Truncating mutations predicted 
to affect the TAZ2 (CH3) domain specifically are highlighted. Two other 
truncating mutations not specific to TAZ2 (CH3) are OVCAR-8 (S893*) 
and COLO-704 (K1469fs).
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Extended Data Fig. 8 | Comparison of CCLE gene expression data with 
primary tumour (TCGA) and normal tissue (GTEx) gene expression 
datasets. a, Comparison of gene expression profiles between the CCLE 
cell lines (n = 1,019) and TCGA primary tumours (n = 10,535). For every 
gene in each dataset, expression values were averaged per cancer type and 
then mean centred across types. Pearson correlation values were calculated 
between the CCLE and TCGA cancer types using the (n = 5,000) most 
highly variable genes. b, Comparison of average gene expression profiles 

between the CCLE cell lines (n = 1,019) and the GTEx normal tissues 
(n = 11,688). Similar to a, expression profiles for each tissue type in 
GTEx was correlated with the CCLE expression profiles (n = 5,000 
genes). c, Gene expression comparison of eight prostate cell lines and 
TCGA primary tumour samples (n = 5,000 genes). d, Gene expression 
comparison of eight prostate cell lines and GTEx normal tissue samples 
(n = 5,000 genes).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | MDM4 alternative splicing and association with 
RPL22 and RPL22L1. a, Distribution of MDM4 exon 6 inclusion (left) and 
MDM4 mRNA expression (right) correlation with all gene dependencies 
in the Achilles RNAi dataset (n = 189–478; Supplementary Table 10). 
b, Correlation of MDM4 exon 6 inclusion with sensitivity to all small 
molecules in the CTRP AUC dataset using all cell lines. Nutlin-3a is the 
top drug sensitivity correlated with MDM4 exon 6 inclusion (n = 79–810; 
Supplementary Table 10). c, Example of nutlin-3a sensitivity versus MDM4 
exon 6 inclusion in the AML cell lines (Spearman correlation ρ = −0.64, 
P = 3 × 10−4, n = 28). The y axis shows the AUC for nutlin-3a in the 
CTRP dataset. d, Scatterplot of MDM4 exon 6 inclusion versus RPL22L1 
expression for all p53-mutant (left, n = 711) and p53 wild-type (right, 
n = 288) CCLE cell lines. P values determined by Pearson’s correlation test.  
e, Frequency of RPL22 recurrent frameshift mutations (left) and copy 

number deletions (right) in TCGA. f, Frequency of RPL22 recurrent 
frameshift mutations (left) and copy number deletions (right) in CCLE.  
g, Correlation of RPL22L1 mRNA expression with RPL22 copy number 
loss and RPL22 frameshift deletions in TCGA. P value determined by  
two-sided Kruskal–Wallis rank-sum test. Box plots as defined in Fig. 4d. 
Values in parentheses denote sample size in each category.  
h, Correlation of MDM4 exon 6 inclusion with RPL22 copy number 
loss and RPL22 frameshift deletions in TCGA. P value determined 
by two-sided Kruskal–Wallis rank-sum test. Box plots are as defined 
in Fig. 4d. Values in parentheses denote sample size in each category. 
i, Selected genomic features that correlate with sensitivity to MDM4 
shRNA knockdown. mRNA expression of MDM4 and TP53 are shown for 
comparison.



Article reSeArcH

Extended Data Fig. 10 | Examples of microRNA expression associated 
with gene dependencies in cell lines. a, t-SNE plot for miRNA data across 
all CCLE cell lines. Each dot represents a cell line. Each colour represents 
a different cell lineage. Colour coding is as in Fig. 1. b, Scatter plot of 
pairwise Pearson’s correlation of gene dependency and miRNA expression 
(n = 420 cell lines), normalized for each microRNA (z1, x axis) and  
each gene dependency (z2, y axis). Strong outlier pairs with |z1| > 6 or 
|z2| > 6 are highlighted. c, Distribution of Pearson’s correlations of  
mir-215 expression with Achilles RNAi gene dependencies for 16,871 
genes (n = 162–420 cell lines; Supplementary Table 13). CTNNB1 
knockdown is the top negative correlate with mir-215 expression.  
d, Distribution of Pearson’s correlations of CTNNB1 gene dependency 
with all 734 measured miRNAs (n = 420 cell lines). The expression of 
mir-215 is the top gene negatively correlated with CTNNB1 dependency. 
mir-215 and mir-194-1 cluster together at 1q41, whereas mir-192 and 
mir-194-2 cluster at 11q13.1. mir-215 and mir-192 are close homologues. 

e, Scatterplot of mir-215 expression versus CTNNB1 dependency of all 
CCLE cell lines. Colon and stomach lineages are shown in blue and red, 
respectively. f, Scaled mir-215 expression in TCGA and CCLE datasets 
(n = 14; mean ± s.e.m.). Stomach and colorectal lineages in both datasets 
have high mir-215 expression. g, Single-sample gene set enrichment 
analysis identifies TGFB1 and WNT3A pathway gene sets correlated 
with mir-215 expression using CCLE RNA-seq data. The gene set ‘Labbe 
targets of TGFB1 and WNT3A’ of downstream targets of TGF-β and 
WNT ligands is negatively correlated with mir-215 expression. h, The 
gene set ‘Labbe targets of TGFB1 and WNT3A’ is negatively correlated 
with mir-215 expression in the TCGA stomach mRNA expression dataset. 
i, The gene set ‘Vecchi gastric advanced vs early dn’ of downregulated 
genes distinguishing between advanced and early gastric cancer subtypes 
is positively correlated with mir-215 expression in the CCLE. j, mir-215 
expression in the stomach TCGA mRNA expression dataset is positively 
correlated with the ‘Vecchi gastric advanced vs early dn’ gene set.



ArticlereSeArcH

Extended Data Fig. 11 | See next page for caption.
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Extended Data Fig. 11 | RPPA analysis. a, Distribution of Pearson’s 
correlation coefficient between total protein levels as measured by RPPA 
and mRNA expression levels measured by RNA-seq (n = 890 cell lines, 
154 genes). The empirical null distribution for correlation of mRNA and 
protein for two random genes is shown for comparison (P < 2.2 × 10−16, 
two-sided Wilcoxon rank-sum test). b, Effect of RPPA dynamic range on 
mRNA and protein correlation (n = 96). mRNA and protein correlation 
is plotted against dynamic range for each validated total protein antibody. 
Most antibodies with low mRNA and protein correlation tend to have low 
dynamic range with the exception of the gene VEGFR2, which despite high 
dynamic range, exhibits very low mRNA and protein correlation. P values 
determined by two-sided Pearson’s correlation test. c, Effect of RPPA 
antibody quality and target type on mRNA/protein correlation. On the 
left, mRNA/protein Pearson correlation is plotted for ‘validated’ (n = 96) 
and ‘with caution’ (n = 58) antibodies for antibodies against total proteins. 
On the right, mRNA and protein Pearson’s correlation is plotted for 
antibodies against total protein (n = 154) and antibodies against phospho-
protein (n = 50). Median correlations are 0.62 (validated), 0.48 (caution), 
0.54 (total protein), 0.21 (phospho-protein). P values determined by  
two-sided Wilcoxon rank-sum test. Box plots are as defined in Fig. 4d.  
d, Comparison of mRNA and protein correlations in CCLE and TCGA 
(n = 152). The Pearson’s correlation between mRNA and protein levels is 
calculated for each RPPA antibody in CCLE and TCGA separately. Each 
dot represents an antibody. Generally, the antibodies with low mRNA and 
protein correlation in CCLE also have low mRNA and protein correlation 
in TCGA data. P values determined by two-sided Pearson’s correlation 
test. e, Distribution of gene dependency (Achilles RNAi) correlations 
with RPPA pSHP2 level (left, n = 161–411, Supplementary Table 14) 
and PTPN11 mRNA expression (right, n = 192–478, Supplementary 
Table 14). PTPN11 dependency is strongly correlated with pSHP2 level, 
whereas there is no significant correlation with PTPN11 mRNA level. 

f, Comparison of pSHP2 levels in SHP099-sensitive and -resistant cell 
lines (n = 60). P value determined by two-sided Wilcoxon rank-sum 
test. SHP099 sensitivity data were obtained from a previous study26. Box 
plots are as defined in Fig. 4d. g, Pearson’s correlation of pSHP2 and 
Sanger GDSC drug sensitivity AUC dataset (n = 265 drugs and 198–588 
overlapping cell lines). h, Model error for elastic net model of sensitivity 
to ponatinib with and without using RPPA data as predictive features. The 
y axis shows the cross-validation error (fivefold cross-validation) against 
parameter λ of elastic net (parameter α is fixed at 0.2). Data are mean ± s.d.  
for the five cross-validation sets. The minimum cross-validation error for 
models with and without using RPPA data are shown by arrows.  
i, Elastic net results for sensitivity to ponatinib. pSHP2 is the top feature 
selected by elastic net. On the left, elastic net weights (averaged over 200 
bootstrapping trials) and colour-coded by the frequency each feature was 
selected by elastic net. The numbers in parentheses are the frequency 
each feature was selected. Each column is a cell line and each row is a 
feature. The cell lines are sorted by their sensitivity to ponatinib (shown 
at the bottom). j, Western blot analysis of pSHP2 and total SHP2 levels 
across AML and select CML cell lines. Western blots were performed 
twice independently with similar results. k, Validation of RPPA data for 
pSHP2. pSHP2 levels measured by western blot are plotted against pSHP2 
levels measured by RPPA for the tested AML and control CML cell lines 
(n = 19). The cell lines are colour-coded by their sensitivity to ponatinib. 
P values determined by two-sided Pearson’s correlation test. l, In vivo 
mouse xenograft experiment survival curves of ponatinib-treated and 
control mice for the low pSHP2 primagraft DFAM-68555 (n = 7 mice in 
each treatment group). P values determined by log-rank (Mantle–Cox) 
test. m, Immunohistochemistry of spleen specimens from mice treated 
with control or ponatinib for 5 days using anti-CD45. Similar results were 
found using the other two independent sets of mice.
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection All software used in the analysis was either published or is in press, and can be 
provided upon request. All software is described in the Supplemental Methods section of the paper.

Data analysis We used custom R codes for most of the analysis. Source codes are available upon request. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All processed data used in this manuscript will become available on the CCLE portal (www.broadinstitute.org/CCLE) and companying R package. The raw data will be 
deposited to public repositories.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We selected the cell lines based on commercial availability and unmet medical need as was previously described in the original CCLE 
publication.  
For the in-vivo Ponatinib/pSHP2 efficacy experiment, for each model, we used 7 mice in treatment and 7 mice in control groups, to achieve 
statistical significance. This number was chosen based on prior experience. 

Data exclusions We used various QC metrics for RPPA, DNA methylation, microRNA as described in the supplemental methods to exclude samples with low 
quality. 

Replication We included 5 biological replicates and 30 technical replicates in RPPA batches as described in the supplemental methods.  28/30 technical 
replicates had high concordance between the two batches.  
In Ponatinib/pSHP2 in-vitro validation experiment, we validated RPPA pSHP2 measurements by Western blot as presented in the manuscript 
and described in supplemental methods.

Randomization In Ponatinib/pSHP2 in-vivo experiment, mice were randomized to treatment/control groups. 

Blinding Genetic, transcriptomic, RPPA, DNA methylation and global chromatin profiling data collection were performed without 
the investigators' knowledge of cell lines identities. Investigators were not blind to cell line identities during analysis.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used A complete list of antibodies used is given in Supplemental Table 14. 

Validation Only antibodies with a Pearson correlation coefficient between RPPA and western blotting of greater than 0.7 were used. 
Antibodies with a single or dominant band on western blotting were further assessed by direct comparison to RPPA using cell 
lines with differential protein expression or modulated with ligands/inhibitors or siRNA for phospho- or structural proteins, 
respectively. 

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) A list of the CCLE cell lines and vendors is available on the CCLE portal (www.broadinstitute.org/CCLE) 

Authentication Cell line authentication was performed using SNP-based DNA fingerprinting.

Mycoplasma contamination Cell lines were tested for mycoplasma contamination.
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Commonly misidentified lines
(See ICLAC register)

We have compared germline SNPs across CCLE cell lines and between CCLE and Sanger cell lines and annotated the cell lines 
that share high SNP identity including KPL-1 / MCF7 which is listed in ICLAC 

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Each primagraft was xenotransplanted into twenty female 7-week-old NOD scid gamma (NSG) mice from Jackson Laboratory 
(Bar Harbor, ME).

Wild animals N/A

Field-collected samples N/A
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